Позиционные системы счисления
Под системой счисления понимают способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами. Существуют различные системы счисления. От их особенностей зависят наглядность представления числа при помощи цифр и сложность выполнения арифметических операций.
В ЭВМ используются только позиционные системы счисления с различными основаниями. Позиционные системы счисления характеризуются тем, что одна и та же цифра имеет различное значение, определяющееся позицией цифры в последовательности цифр, изображающих число.
Пример.:
- Десятичная система счисления – позиционная,
- Римская система счисления – непозиционная.
Количество S различных цифр, употребляющихся в позиционной системе счисления, называется ее основанием. В общем случае, любое число в позиционной системе счисления можно представить в виде полинома от основания S:
.В качестве коэффициента e могут стоять любые из S цифр, используемых в системе счисления. Однако для краткости число принято изображать в виде последовательности цифр.
Позиции цифры, отсчитанные от запятой (точки), отделяющей целую часть от дробной, называются разрядами. В позиционной системе счисления вес каждого разряда больше соседнего в число раз, равное основанию системы S.
Пример.
Для десятичной системы счисления (основание S = 10) имеем число 6321.564. Веса разряда и коэффициенты e для этого числа будут следующими:
Веса | 103 | 102 | 101 | 100 | 10-1 | 10-2 | 10-3 | ||||||||
6 | 3 | 2 | 1 | 5 | 6 | 4 |
В ЭВМ применяют двоичную, восьмеричную и шестнадцатеричную системы счисления. В дальнейшем систему счисления, в которой записано число, будем обозначать подстрочным индексом, заключенным в круглые скобки. Например: 1101(2), 369(10), BF(16) и т.д.