Математические основы радиальных сетей
Математическую основу функционирования радиальных сетей составляет теорема Т. Ковера о распознаваемости образов, в соответствии с которой нелинейные проекции образов в некоторое многомерное пространство могут быть линейно разделены с большей вероятностью, чем при их проекции в пространство с меньшей размерностью.
Если вектор радиальных функций в







Граница между этими классами определяется уравнением

Доказано, что каждое множество образов, случайным образом размещенных в многомерном пространстве, является




Простейшая нейронная сеть радиального типа функционирует по принципу многомерной интерполяции, состоящей в отображении







Использование


обучающими парами


центров узлов сети определяются одним из векторов


![]() | (1) |





Доказано, что для ряда радиальных функций в случае

квадратная интерполяционная матрица

![]() | (2) |
Теоретическое решение проблемы, представленное выражением (2), не может считаться абсолютно истинным по причине серьезного ограничения общих свойств сети, вытекающих из сделанных вначале допущений. При очень большом количестве обучающих выборок и равном ему количестве радиальных функций проблема с математической точки зрения становится бесконечной (плохо структурированной), поскольку количество уравнений начинает превышать число степеней свободы физического процесса, моделируемого уравнением (1). Это означает, что результатом такого чрезмерного количества весовых коэффициентов станет адаптация модели к разного рода шумам или нерегулярностям, сопровождающим обучающие выборки. Как следствие, интерполирующая эти данные гиперповерхность не будет гладкой, а обобщающие возможности останутся очень слабыми.
Чтобы их усилить, следует уменьшить количество радиальных функций и получить из избыточного объема данных дополнительную информацию для регуляризации задачи и улучшения ее обусловленности.