Обучение сети Хопфилда методом проекций
Лучшие результаты, чем при использовании правила Хебба, можно получить, если для обучения использовать псевдоинверсию. В основе этого подхода лежит предположение, что при правильно подобранных весах каждый поданный на вход сети вектор вызывает генерацию самого себя на выходе сети. В матричной форме это можно представить в виде

где





обучающих векторов


где знак + обозначает псевдоинверсию.
Если обучающие векторы линейно независимы, последнее выражение можно упростить и представить в виде
![]() |
(2) |
Здесь псевдоинверсия заменена обычной инверсией квадратной матрицы


Выражение (2) можно записать в итерационной форме, не требующей расчета обратной матрицы. В этом случае (2) принимает вид итерационной зависимости от последовательности обучающих векторов




при начальных условиях




Модифицированный вариант метода проекций - метод


Обучающие векторы предъявляются многократно вплоть до стабилизации значений весов.