Нейрокомпьютерные системы

       

Алгоритм Кохонена


Алгоритм Кохонена относится к наиболее старым алгоритмам обучения сетей с самоорганизацией на основе конкуренции, и в настоящее время существуют различные его версии. В классическом алгоритме Кохонена сеть инициализируется путем приписывания нейронам определенных позиций в пространстве и связывания их с соседями на постоянной основе. Такая сеть называется самоорганизующейся картой признаков (сеть SOFM - Self-Organizing Feature Map). В момент выбора победителя уточняются не только его веса, но также и веса его соседей, находящихся в ближайшей окрестности. Таким образом, нейрон-победитель подвергается адаптации вместе со своими соседями. В классическом алгоритме Кохонена функция соседства

определяется в виде

В этом выражении

обозначает эвклидово расстояние между векторами весов нейрона-победителя
и
-го нейрона. Коэффициент
выступает в роли уровня соседства, его значение уменьшается в процессе обучения до нуля. Соседство такого рода называется прямоугольным.

Другой тип соседства, часто применяемый в картах Кохонена, - это соседство гауссовского типа, при котором функция

задается формулой

Степень адаптации нейронов-соседей определяется не только евклидовым расстоянием между

-м нейроном и победителем (
-м нейроном), но также и уровнем соседства
. В отличие от соседства прямоугольного типа, где каждый нейрон, находящийся в окрестности победителя, адаптировался в равной степени, при соседстве гауссовского типа уровень адаптации различен и зависит от значения функции Гаусса. Как правило, гауссовское соседство дает лучшие результаты обучения и обеспечивает лучшую организацию сети, чем прямоугольное соседство.

Самоорганизующаяся карта признаков проходит два этапа обучения. На первом этапе элементы упорядочиваются так, чтобы отражать пространство входных элементов, а на втором происходит уточнение их позиций. Как правило, процесс представляется визуально путем использования двумерных данных и построения соответствующей поверхности. Например, входные векторы выбираются случайным образом на основе однородного распределения в некотором квадрате, и начинается обучение карты.

Содержание раздела