Нейрокомпьютерные системы

       

Определение мягкой экспертной системы. Сравнение нечеткой и мягкой экспертных систем


Нечеткие экспертные системы (ЭС) используют представление знаний в форме нечетких продукций и лингвистических переменных. Основу представления лингвистической переменной составляет терм с функцией принадлежности. Способ обработки знаний в нечетких ЭС - это логический вывод по нечетким продукциям. Особенностью нечеткой ЭС является способ извлечения функций принадлежности, который сводится либо к статистическим методам построения, либо к методу экспертных оценок. Мягкой ЭС (МЭС) будем называть нечеткую ЭС, которая обладает следующими особенностями:

  • использует статистические данные, которые интерпретирует как обучающие выборки для нечетких нейронных сетей;
  • представляет знания в виде лингвистических переменных (функций принадлежности - ФП), нечетких продукций и обученных нейронных сетей. Редукция множества нечетких продукций,настройка ФП и базы правил выполняется с помощью генетических алгоритмов (ГА).

Мягкими называют вычисления, сочетающие теорию нечетких систем, нейронные сети, вероятностные рассуждения и генетические алгоритмы, и обладающие синергическим эффектом; следовательно, мягкой экспертной системой называют ЭС, сочетающую перечисленные теории ради того же эффекта взаимного усиления.

Рассмотрим возможные применения МЭС в автоматизированном проектировании. Обобщенной моделью проектирования является иерархически-блочный метод, сущность которого сводится к декомпозиции функций с последующим выделением иерархий систем и подсистем. Проектируемая система формируется с помощью синтеза таких подсистем. Анализ в ходе автоматизированного проектирования обычно заключается в том, что необходимо рассмотреть условия эксплуатации будущей системы или ее окружения, которое является сложной системой (например, для экономических информационных систем окружающая среда - это социально-экономическая среда). Кроме анализа окружающей среды в ходе проектирования приходится выполнять анализ результатов физических или численных экспериментов и имитационного моделирования. Можно выделить два основных принципа экспертной деятельности в ходе проектирования.


1. Исходные данные для анализа представляются в виде качественного описания структурно-функционального решения и в виде совокупности временных рядов системных переменных окружения.

Принцип "конструктивной неопределенности" утверждает, что точность и смысл противоречат друг другу, начиная с некоторого момента анализа. Если в технике важными являются все более точные измерения, то в ходе анализа эксперт отказывается от точных цифр в пользу нечетких, но содержательных оценок, которые осмыслены и позволяют принять проектное или управленческое решение.

Мягкая экспертная система должна предоставить инструментальную и информационную среду для экспертной деятельности в ходе проектирования. Инструменты для разработки МЭС должны представлять собой совокупность различных программных продуктов, объединенных логикой работы. Покажем, что МЭС, являющаяся инструментальной средой проектировщика, позволяет выполнить в автоматизированном режиме все этапы экспертной деятельности. Если рассматривать экспертную деятельность как управление объектом, то инструментарий экспертизы можно использовать как систему управления, а именно - нечеткий контроллер.


Содержание раздела